
The data obtained on the radiation spectrum fields can be utilized to compute the inte- 
grated optical characteristics of a material and the integrated radiation field distribution 
in a layer that are needed to determine the heat source for an analytic description of the 
temperature fields under IR-expose. 

NOTATION 

I I R I  RX' TX X~ are directional-hemispheric (@.(i,,2~) thermoradiational characteristics; R~, 

T%, RI~ are bihemispherical (2~; 2~) thermoradiational characteristics; L X, kx, sx, el are 
optical characteristics-the effective attenuation, absorption "back-scattering", and extinc- 
tion coefficients, m-i; C I and C 2 are Duntley parameters, E l is the density of diffuse, and 
E L the density of directional monochromatic radiation flux incident at a certain angle @, 
WTm2; w~ and w X are the magnitudes of the absorbed radiation energy flux under directional 

and diffuse exposure, W/m3; El~ is the magnitude of the spatial irradiance, W/m=; and ql is 
the density of the resultant flux, W/m 2. 
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H_EAT TRANSFER IN ANISOTROPIC METALLIC MEDIA 

V. R. Sobol' and T. A. Krivoruchko UDC 539.22:536.2 

The temperature distribution over the cross-section of a metallic sample with 
anisotropic kinetic coefficients heated by an electric current in liquid helium 
has been studied. 

As is known, low-temperature phenomena of heat and charge transfer in metals are deter- 
mined by the degree of nonequilibrium of the conduction electrons, their dispersion law, 
which results in the interaction of these phenomena, and their distinct influence on each 
other [1-5]. This appears to be especially strong under conditions of anisotropy, both natu- 
ral, crystalline anisotropy, and also artificial anisotropy introduced, for example, by a 
strong external magnetic field. Thus, in metals belonging to a cubic crystallographic system, 
kinetic coefficients that are described by scalar values in the absence of a magnetic field 
become tensors of the second rank in a strong magnetic field; the latter results in the emer- 
gence of many cross effects in thermal electrotransfer. 

In the present work results are given of the study of a steady-state problem of heat 
transfer and of the effect of the conditions for the Joule power dissipated in the volume of 
a sample on the temperature distribution over the cross-section of a metallic single-crystal 
sample in a strong transverse magnetic field with temperature-dependent kinetic coefficients 
of the metal. 
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As an object of study we have chosen a sample having a square cross-section with a cur- 
rent flowing along the sample parallel to the OX-axis with density Jx that is constant over 
the cross-section, i.e., we use an approximation of a specified current that is typical for 
low-temperature transfer phenomena, with the current along the other directions being absent 
in the entire volume of the sample, i.e., jy = jz = 0. The sample is immersed in liquid 
helium so that one pair of faces [normal with respect to the vector of the magnetic field 
intensity H = Hz (Hx = Hy = 0)] is adiabatically isolated from the environment, and heat 
flow along the OZ-axis is absent in the entire volume of the sample (qz = 0). The other pair 
of lateral faces (normal with respect to the OZ-axis, with coordinates y = • where d is the 
the transverse dimension of the sample) is open and has the temperature of liquid helium, 
equal to 4.2 K. The heat is dissipated through these faces. In this case, when the released 
joule power is dissipated in a thermostat, the temperature distribution over the cross-section 
of the sample is determined from the steady-state equation of heat transfer, which in dif- 
ferential form is 

d i v q - - j E -  O, (1 )  

where q is the heat flow through the lateral surface in the direction of external normal 
toward this surface, and jE is the scalar product of the vectors of the current density and 
the electric field intensity, representing a heat source in the given volume. To formulate 
the problem in closed form, Eq. (i) should be supplemented by the generalized equations of 
charge and heat transfer, which in differential form are written as 

or  (2) 
El = Pidk-ka~h--, 

OX~ 

OT 
qt = a i k i h - -  • -- , (3) 

OX~. 

where i, k = x, y, z, and summation is assumed over repeated indices; Ei and qi are 
the components of the vectors of the electric field intensity and heat flow along the 
i-th direction of the Cartesian system of coordinates; Pik, ~ik, and xik are components of 
the electrical resistance tensors, thermo electromotive force, and heat conduction; Wik is 
the component of the tensor describing the Peltier effect; and 3T/SX k temperature gradient 
along one of the directins (x, y, z). 

By using the condition that the dimensions of the sample along the direction of the 
electric field are much larger than the transverse dimensions, we apply the approximation of 
an infinitely long sample, for which the distribution over T or the temperature gradient 
along the long axis is absent, i.e., 8T/Sx = 0. At first, as a sample material we consider 
a simple noncompensated metal with a closed Fermi surface in which elastic interaction with 
impurities dominates in the scattering of conduction electrons; this allow us to introduce 
a temperature-independent electron relaxation time ~, i.e., we can use the so-called ~-ap- 
proximation for describing the kinetic coefficients of a metal. By eliminating from the 
expression for the flow qy the gradient 3T/Sz, we obtain from (i) the following equation, 
by solving which we determine the temperature distribution along the OY-axis: 

_ 

X 
OT a,x .2 OT 

@z • • Oy 

(4) 

We introduce the notation 

V ~ OSxg -- 05xz 
I ] ' ~zy 

~zy 2~yx-- ~zx ~zz J T ~zz 
~zz 
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where the prime and T next to the parentheses denote the differentiation of the expression 
inside the parentheses with respect to temperature. The differential equation obtained con- 
tains coefficients for ST/By, depending on temperature. However, taking account of the fact 
that in the T-approximation the kinetic coefficients of the metal in (4) have a simple, i.e., 
explicit linear or quadratic dependence on T (~ih~T; • ~iheodihY~T ~) , it is easy to 
reduce Eq. (4) to a form in which the coefficients for the derivatives are constants. Indeed, 
since all the coefficients for 8T/~y in (4) contain the temperature only in the first power, 
it can be readily factored out, and after regrouping terms, Eq. (4) can be represented in 
the form 

• ~'" . O a a OT 

+ ~ �9 - -  = p ~  i ~  + o~,~ 
• / 7" ay ~zz 

or after regrouping, 

--FT" -1- Dr  - -  9xx + o% I ]~ ---- O. 
} (5) 

0 
The equation obtained is an equation of first order with respect to the quantity 

@ 

(~) . It should be noted that in the expression describing the source of heat , Pxx does not 

depend on temperature, since a slight warming-up of the sample does not violate the elastic 
character of the electron scattering, and Pxx agrees with the residual resistance P0 in order 

of magnitude, while -- ~zx , in turn, 
' Mz z 

is a quadratic function of the temperature. 

We estimate the values of the kinetic coefficients of the metal entering into (5). Thus, 
for the residual resistance P0 ~ 10-is ohm-cm, from the Wiedemann-Franz law and the Lorentz 
number, we obtain ~2.4.10 2 TW/(cm'K2). The order ofmagnitude of =xz for the given case is 
10 -s V/K. In order tO estimate the quantity ~zx we use the condition of the syImnetry of the 
kinetic coefficients in a strong magnetic field [4]: 

z% = ~iz Plh ; ~u (H) = - -  T~u (H), (6) 

where ~is is a proportionality constant between the current density and the temperature gradient 
in (2) rewritten in the form 

OT 
h = ~i~ E~ + fhl 

OXz 

By using expressions for the tensors ~ and P in the presence of a strong magnetic field 
[4]: 

[ ~.c~ ~.% ~.c=\ I Bx~ -~ 
" ~. Cy~] , ~ �9 By~ Byy ) , p :  < 8.; 

\ - -  "~.Cx~ - -  ?, C~z Czz /  Bzx Bzy Bzz 

where y = (m~) -1 , t0 i s  t h e  c y c l o t r o n  f r e q u e n c y ,  ~ i s  t h e  r e l a x a t i o n  t i m e  o f  t h e  c h a r g e  c a r -  
r i e r s ;  C and B are the values of the corresponding kinetic coefficients for H = 0, it is easy 
to show that ~zx for the given case agrees in order of magnitude with ~ in the absence of 
a magnetic field, i.e., ~zx--~ ~TT 2~ 16-I0-8V for T = 4.2 K. Finally, by comparing the 
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numerical values of the quantities •215 ~:~ and Pxx, it is easy to notice that p~ 
is larger by seven orders of magnitude and without a noticable loss of accuracy of the solu- 
tion we can neglect the term containing a=z~1~zx, in the expression for the heat source. 
The equation obtained is easily solved in order to determine the second constant of integra- 
tion with the symmetry condition ST/By = 0 for y = 0 being used. As a result we obtain the 
following temperature distribution along the OY-axis: 

exp g -- ~' +---- 
j 

i 

i ") 
(7) 

Consequently, the temperature gradient at any point is described by the expression 

dT _ 1/2 I pxx]~ F'T _ D'r]___..~ 9 ) -  9] . 4 - ~ - -  
D}i= 

! 

DTi~' D-~]= exp , F) 2 - - T  • 

[Po~]~ D'T jx y) __ 1 ] 
•  ( F~ j "  

r~ 
2 

(8) 

We simplify the given expression and estimate the values entering into it. Thus, for 
the closed Fermi surface from expressions for p and $ we obtain the order of value ~x: 
ayx=yn , while and Zyz are determined by expressions axy=ya; Zyy=y2~; Xyz==y~, 

with ~ = i0 -s V/K, and u--~ 9.8"10 2 W/cm'K). We estimate the value of the expression under 
the exponential sign 

I" ~zy  

Dr~<= I ~y - ~= ~• -- 
(9) 

In the magnetic field H = i00 kOe, ~T = 7.2"102 , and the argument of the exponent is 
equal to 3.6.10 -4 cm -l, which allows us to expand the exponent on a characteristic length 
equal to the transverse dimension of the sample in a quickly converging series and to restrict 
ourselves to the first nonvanishing terms. As a result, the expression for 8T/ay for y = d/2 
assumes the form 

dr ex~]~ d 
--= - 1  )TT0 T (Io) 

The same consideration is applicable for metals with a more complicated law of disper- 
sion of conduction electrons, for example, when the Fermi surface is not closed (a corrugated 
cylinder open along the transport direction OX). However, in order to convert from Eq. (4) 
to an equation with constant coefficients it is necessary to compare Pxx and ~=• in 
magnitude under the new conditions of openness of the Fermi surface. For the case of a metal 
with Fermi surface open along the OX-axis, tensors $ and p are of the form 

V" x~ yC~=,j yC= /y-2B~ 7-~B~y v-lB~z 
(11) 

By using (6) it is easy to find out that a~y-].~ With account for the fact that pxxoo 
(~T)2p6, a~=__~o)~ and x=~x , we obtain that the relationship between the values Pxx and 
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~zxz~• I for the case of an open Fermi surface does not change since both values increase 
by the factor (~)2 This allows us, with the previous accuracy, to ignore the term ~z~• I 
as compared with Pxx (4). 

In order to estimate the temperature gradient on the lateral face of a real metal sample 
with open Fermi surface we should simplify Eq. (8). In order to do this we list the values 
of parameters entering into the argument of the exponent in (8), determining beforehand from 
(ii) and (6) the values of the components of the Peltier tensor ~xz and ~u which in order 
of magnitude constitute ~:--~-y~ , ~j~%,-i and ~x~y-1; ~a?-1; •215 Substituting~ 

the obtained values of the components of tensors of kinetic coefficients of the metal with the 
open Fermi surface in (9) and retaining the lowest powers with respect to the parameter y, 
we obtain that the argument of the exponent remains a quantity of the order of 10 -4 cm -I as 
before. Therefore, even in this case we can simplify (8) by expanding the exponent into a 
series; after that, the expression for the temperature gradient on the lateral surface of 
the sample assumes form (10). If it is taken into account that the functional dependence 
of the kinetic coefficients on the magnetic field (in metals with a closed Fermi surface, 
Pxx does not depend on H, but • ~176 while in metals with the Fermi surface open along 
the OX-axis Zyy~• but p~ ~H2) , then it becomes apparent that the temperature gradient on 
the lateral surface of the sample both for the case of closed and open electron orbits is 
the same in order of magnitude. The estimated transverse temperature gradient in the aniso- 
tropic medium causes a thermoelectric contribution of the transport current to the electric 
field according to Eq. (2). In this case the sign and magnitude of this contribution are 
determined by the direction of the magnetic field and by peculiarities of the band structure 
of the system of charge carriers. Therefore, in a metal with open Fermi surface, this con- 
tribution is much larger than for a metal with a closed Fermi surface because the Components 
of the tensor of the thermoelectric force ~ and a~ differ by a factor of (~)2 i.e., 

=~ = ~_i , cl = ~=. This, however, does not mean-~that in the given approximation the frac- ~xy 
tion of the thermoelectric effect in the overall potential difference being measured in the 
case of the open Fermi surface is larger than for the closed, since the ohmic voltage drop 
also increases in the given case by a factor of (~)2 due to the diagonal component of the 
tensor of electric resistance. 

Therefore, the conducted analysis shows that in the course of the low-temperature experi- 
ment on galvanomagnetic properties of metallic media, in addition to the harmful effect of 
the intrinsic field of the transport current on the charge transfer, it is necessary to con- 
duct studies on the magnitude and effect of thermoelectric phenomena on the desired ohmic 
voltage drop, which is particularly timely for low-ohmic high-purity metals, requiring large 
densities of the transport current. 
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